Detection and Estimation of Multiple Fault Profiles Using Generalized Likelihood Ratio Tests: A Case Study

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Estimation of Multiple Fault Profiles Using Generalized Likelihood Ratio Tests: A Case Study

Aircraft and spacecraft electrical power distribution systems are critical to overall system operation, but these systems may experience faults. Early fault detection makes it easier for system operators to respond and avoid catastrophic failures. This paper discusses a fault detection scheme based on a tunable generalized likelihood algorithm. We discuss the detector algorithm, and then demons...

متن کامل

Detection and Estimation of Multiple Fault Profiï¿1⁄2les Using Generalized Likelihood Ratio Tests: A Case Study

Aircraft and spacecraft electrical power distribution systems are critical to overall system operation, but these systems may experience faults. Early fault detection makes it easier for system operators to respond and avoid catastrophic failures. This paper discusses a fault detection scheme based on a tunable generalized likelihood algorithm. We discuss the detector algorithm, and then demons...

متن کامل

Maximum Likelihood Estimation and Likelihood-ratio Tests

The method of maximum likelihood (ML), introduced by Fisher (1921), is widely used in human and quantitative genetics and we draw upon this approach throughout the book, especially in Chapters 13–16 (mixture distributions) and 26–27 (variance component estimation). Weir (1996) gives a useful introduction with genetic applications, while Kendall and Stuart (1979) and Edwards (1992) provide more ...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 2012

ISSN: 1474-6670

DOI: 10.3182/20120711-3-be-2027.00337